
Path finding algorithm for moving robots and
obstacles avoidance

Steven Boeckx
Thomas More campus De Nayer
Sint Katelijne Waver, Belgium

steven.boeckx1@gmail.com

Dirk Van Merode
Thomas More campus De Nayer
Sint Katelijne Waver, Belgium

dirk.vanmerode@thomasmore.be

Patrick Pelgrims
Thomas More campus De Nayer
Sint Katelijne Waver, Belgium

patrick.pelgrims@thomasmore.be

Olga Gladkova
Software Tools Department

Zaporizhzhya National Technical
University

Zaporizhzhya, Ukraine
gladolechka@gmail.com

Anzhelika Parkhomenko
Software Tools Department

Zaporizhzhya National Technical
University

Zaporizhzhya, Ukraine
parhom@zntu.edu.ua

Abstract— In this paper existing path finding algorithms were
analized and the best path finding algorithm for the Robocup
project is presented.

Keywords—path finding algorithm; mobile object; obstacles

I. INTRODUCTION
Robocup is a competition in robot soccer matches. The

final goal is to form a team of humanoid robots that can win a
match against the human soccer world champions by 2050 [1].
But it is not just a competition, it also has the goal to promote
robotics and artificial intelligence (AI) research.

Each participating team builds its own robots. As part of a
student project in Thomas More Campus De Nayer (Sint
Katelijne Waver, Belgium) the Robocup Project was started. In
the Small Size League the robots need to have a cylinder-like
shape. The maximum size of the cylinder is 150mm in height
and 180mm in diameter. The match is held between two teams
of 6 soccer robots each. Building a successful team requires
clever design, implementation and integration of many
hardware and software sub-components into a robustly
functioning whole [2].

The system architecture is shown on Figure 1. These robots
are autonomously controlled by top-down oriented cameras
and communicate wirelessly to each other to defeat their
opponents.

All robots on the field and the ball are tracked by a
standardized vision system – called SSL-Vision - that
processes the data provided by two cameras that are attached to
a camera bar located 4 m above the playing surface.

Fig. 1. The system architecture

The robots are tracked using a custom pattern on top, which
encodes the team color (circle in the middle) and a unique
robot id – the four circles around (Fig.2).[3]. The standard
marker papers are: Pink, Green, Blue, Yellow.

Fig. 2. Robot small sized league

The camera data is processed by a central computer. This
position data of both teams is broadcasted into a network. Each
team has a central computer, which receives the data, processes
it and sends commands to the robots with a technique of their
choice. [4]

O,e of the biggest problems in Robocup is to calculate the
path between two points on the field without crashing into
other obstacles/robots. Not only preventing to hit the obstacles

is a big task, but also doing this in a limited time frame so that
the AI has enough time to calculate other tasks like role
assignment, sending data over the network, and so on.

II. INVESTIGATION OF THE PATH FINDING ALGORITHMS
Research has shown that path finding algorithm can be

divided in grid based algorithms and graph based algorithms.

A. Grid based algorithm
The first path algorithm is grid based. The idea is to work

with a square grid and to make a list of nodes. Like the name
suggest you divide the field in even squares. Every square is
defined with a specific state of that place on the field, for
example: empty, obstacle, height differences, etc.

The advantage of this type of algorithm is that there is no
need for intensive calculation. But this does not provide any
benefit in this case, because we need to have a big resolution to
cover the field. For example, if we want to use this type of
algorithm for Robocup we need to make the following
calculation if every square is 0.5cm: the playfield is 6m x 3m.
If we calculate the total of needed squares then we need 12000
x 6000 x 1bit (defining if there is an object yes or no) = 72 000
000 bits or 9Mbytes of information. This is too much therefor
the use of this type of algorithm was discarded.

B. Graph based algorithm
Graph based algorithm uses math to calculate a path. This

has an advantage and a disadvantage. The advantage is that
there is no need for a big memory map to save all the properties
(obstructions, empty, …). The disadvantage of this algorithm is
that it needs more processing power to do the calculations.

The graph-based algorithm was chosen in this case, as the
algorithm will be calculated on a PC, so the processing power
is not a big issue.

III. PATH FINDING ALGORITHM

A. Path finding algorithm
To begin with 2 classes were made: node and tree. An

object tree exists of many nodes. The number of nodes is
undefined; this is just how many the algorithm needs. The
maximum amount of nodes that can be used is predefined, just
in case the algorithm did not reach the goal after a long time. In
case this happens the algorithm starts over again.

The algorithm starts with asking in which direction it needs
to grow, in the direction of the goal or in the direction of a
random place. This will be chosen with a random number that
can be between 0-100. The random number will then be
compared with the ratio (like discussed in “RRT, rapidly-
exploring random tree”). Those two elements will define what
the target is.

For example: if the ratio is random 30% and goal 70%, then
the code will select the target being random, if the generated
number is smaller or equal to 30. If the generated number is
greater than 30, the target will be the goal.

After that the code will look which node is the closest to the
target that is defined in the previous step. This is simply done
with the Pythagorean Theorem.

Then the tree will be “virtually” extended towards the
target. The starting place of extension is from the node that is
the nearest to the target.

After the new node is calculated, the algorithm checks if
there is a collision with objects on the field. In case that there is
no collision, the node will be added to the tree. In the other
case the node will be discarded.

The last step is to check if the goal is reached. If yes, the
algorithm ends, else it just starts again from the beginning until
the goal is reached.

B. Testing
The tree is displayed in the developed application by black

lines. The nodes are the circles.

After the goal is reached you can easily determine how the
tree reached the goal. This can be done just by asking the last
node (the one that reached the goal), what its parent is. So from
which node it extended from. If you then ask the same at the
parent from the node and then at the parent’s parent from the
node and repeat this until the starting point is reached, you will
get the path. This the red line in the application.

For control of the defining factors, like the ratio, the growth
speed and the distance between the nodes, sliders were added
to easily modify them (Fig.3).

Fig. 3. Screenshot path finding test application

The blue line in the application (Fig.3) is determined by the
smoothing algorithm. The path needs to be smooth out because
the generated path has unnecessary corners that only extend the
total length of the path.

C. Smoothing algorithm
The algorithm starts by defining 3 nodes: starting node,

current node and previous node (Fig.4). The starting node and

the previous node are the last node in the path (the one nearest
to the goal).

Fig.4. Smoothing algorithm operation diagram

Then the previous node is equal to the current node. After
that the parent off the current node is the current node. Then
checking on collision is done between the starting node and the
current node. In case there is, the previous node will be the new
starting node, this node will also be added to the “smoothed
path”.

This will be done until the start point has been reached.

Fig.5. Smoothing algorithm flowchart

D. Final application
Finally the described path finding algorithm was tested in a

real situation. To do this, an additional application in QT was
developed which reads the coordinates from the robots and the
ball by the use of UDP (Fig.6). The ball in this application is
the goal and the coordinates of the robot itself is the starting

point. The other robots on the field are the obstructions what
the robot needs drive around for reaching the goal/ball.

Fig. 6. Screenshot AI application in QT and GrSim

Similar as in the first application we can recognize the
black, red and blue line defining the steps from the path finding
algorithm. We can see that the robots are on the same place in
the application as in the simulator (only horizontal mirrored).
The orange dot is the ball, the blue circles are the first team and
the green circles the second team.

IV. CONCLUSION
At this moment assembling of one robot is complete. The

QT framework was used for software realization of the path
finding algorithm and algorithms of obstacles bypass. The
GrSim simulator [5] was used for testing. Results of the
simulation showed that the system works correctly. For now it
only operates in simple conditions, with the other robots
stationary. The work for more complex situation with a lot of
moving objects is being continued. The next stage is testing the
system on a real life field together with other robots.

ACKNOWLEDGEMENTS
We would like to express our gratitude towards Patrick

Pelgrims, Jurre de Weerdt and Wim Dams, of the EmSys
Research Group, for research and manufacturing support,
towards Thomas More Mechelen-Antwerpen for enabling us to
do this research and towards VDAB Haasrode for the
manufacturing of all the mechanical parts.

REFERENCES
[1] Daniel Waigand and Gunther Berthold, “Cooperative shoot and pass

behavior of mobile robots in the context of the TIGERS-Mannheim SSL
Robocup-project”. 23.12.2010. URL: https://tigers-
mannheim.de/download/papers/2011-Pass-and-shoot-
Weigand_Berthold.pdf (visited on 26.08.2017)

[2] Small Size League. URL:
http://wiki.robocup.org/wiki/Small_Size_League (visited on 26.08.2017)

[3] RoboCup SSL-Vision Wiki. URL:https://github.com/RoboCup-SSL/ssl-
vision/wiki (visited on 26.08.2017)

[4] Nicolai Ommer AI Architecture and Standard Game Strategies in
RoboCup SSL. URL: https://tigers-
mannheim.de/download/papers/2013-AI_Architecture_and_Strategies-
Ommer.pdf (visited on 26.08.2017)
GRSIM – OVERVIEW [Online]. Available: https://github.com/mani-
monaj/grSim/blob/master/INSTALL.md

Goal

Start

starting

previous

Current
New starting

Smoothed path

obstruction

	I. Introduction
	II. Investigation of the path finding algorithms
	A. Grid based algorithm
	B. Graph based algorithm

	III. Path Finding Algorithm
	A. Path finding algorithm
	B. Testing
	C. Smoothing algorithm
	D. Final application

	IV. Conclusion
	Acknowledgements
	References

